CONCERNING THE ORDER OF APPROXIMATION OF PERIODIC CONTINUOUS FUNCTIONS BY TRIGONOMETRIC INTERPOLATION POLYNOMIALS

BY

A. K. VARMA

ABSTRACT

Let $x_{kn} = 2 \pi k/n$, $k = 0, 1 \dots n-1$ (*n* odd positive integer). Let $R_n(x)$ be the unique trigonometric polynomial of order $2n$ satisfying the interpolatory conditions: $R_n(x_{kn}) = f(x_{kn}), R_n^{(j)}(x_{kn}) = 0, j = 1, 2, 4, k = 0, 1, ..., n-1.$ We set $w_2(t,f)$ as the second modulus of continuity of $f(x)$. Then we prove that $|R_n(x) - f(x)| = o(nw_2(1/n f))$. We also examine the question of lower estimate of $||R_n - f||$. This generalizes an earlier work of the author.

Let

(1.1)
$$
x_{kn} = \frac{2\pi k}{n}, (k = 0, 1, \cdots, n-1; n \text{ is an odd positive integer}).
$$

Let $R_n(x)$ be the unique trigonometric polynomial of order 2n determined by the interpolatory conditions

(1.2)
$$
R_n(x_{kn}) = f(x_{kn}), R_n^{(j)}(x_{kn}) = 0, j = 1, 2, 4, k = 0, 1, \cdots, n - 1.
$$

We assume that $R_n(x)$ has the following form

(1.3)
$$
d_0 + \sum_{j=1}^{2n-1} (d_j \cos jx + e_j \sin jx) + d_{2n} \cos 2nx.
$$

In our earlier work $\lceil 3 \rceil$, we considered the problem of existence, uniqueness, explicit representation and problem of uniform convergence of $R_n(x)$ to $f(x)$ on the real line. The main theorem of $\lceil 3 \rceil$ is as follows.

THEOREM 1. a) If $f(x)$ is a 2π periodic continuous function satisfying the *Zygmund condition 2*

Received April 20, 1972

338 A.K. VARMA Israel J. Math.,

(1.4)
$$
\left| f(x+h) - 2f(x) + f(x-h) \right| = o(h),
$$

then the sequence ${R_n(x)}$ *defined by* (1.2) *and* (1.3) *converges uniformly to* $f(x)$ *over the real line. b) Further, Zygmund class cannot be replaced by Lip* α *,* $0 < \alpha < 1$.

The objects of this paper is to examine the question of lower and upper estimates of $||f - R_n(f)||$ in uniform norm for a certain class of continuous periodic functions.

THEOREM 2. Let $w_2(t,f)$ be the second modulus of continuity of $f(x)$. Then *we have*

(1.5)
$$
| R_n(x) - f(x) | = o \left(n w_2 \left(\frac{1}{n}, f \right) \right)
$$

COROLLARY. Let $f(x)$ satisfy (1.4). *From* (1.5) we have $|R_n(x)-f(x)| = o(1)$. *Thus Theorem* l-a) *is a special case of Theorem 2.*

Let us denote by $\tilde{c}(\phi)$ the class of all 2π periodic continuous functions for which

(1.6)
$$
w_2(t,f) = 0(\phi(t)).
$$

Let $\phi(t)$ have the following properties

(1.7)
\n(i)
$$
\phi(t) > 0
$$
 for $t > 0$, $\phi(0) = 0$, $\phi(T) \ge \phi(t)$, $T \ge t$,
\n(ii) $\phi(t)$ is continuous for $t > 0$,
\niii) $t^2/\phi(t)$ is monotonic increasing for $t \ge 0$
\niv) $\lim_{t \to 0+} t^2/\phi(t) = 0$.

THEOREM 3. *There exists a* 2π *periodic continuous function f belonging to* $\tilde{c}(\phi)$ for which

(1.8)
$$
| R_n(\pi) - f(\pi) | > c n \phi \left(\frac{1}{n} \right) \text{ for } n = n_1, n_2, \cdots
$$

where $0 < n_1 < n_2 < \cdots$ and n is always an odd positive integer.

COROLLARY. *There exists a continuous 2zr periodic function from the class of functions which satisfy the Zygmund condition* $w_2(f, h) = O(h)$ such that $R_n(\pi)$ $-f(\pi)$ > c, i.e., for such a function, $R_n(x)$ cannot converge uniformly to $f(x)$ on *the real line.*

Thus Theorem 3 is much stronger than Theorem 1(b). Proof of Theorem 2 depends on the following

THEOREM *4 (S. B. Steckin). Let k be a positive integer. Then there exists a* positive constant c_k such that for every $f \in c_{2\pi}$ we can find a trigonometric poly*nomial of order n at most such that*

(2.1)

and

$$
(2.2) \t\t\t\t\t\|t_n^{(k)}\| \leq B_k n^k w_k\left(\frac{1}{n},f\right).
$$

Here w_k (δ , f) is the modulus of smoothness of order k of $f(x)$.

From (2.2) we have for $k = 2$

(2.3)
$$
\|t_n^{(2)}\| \leq B_2 n^2 w_2 \left(\frac{1}{n}, f\right).
$$

On using the Bernstein inequality twice, we have

(2.4)
$$
\|t_n^{(iv)}\| \leq B_2 n^4 w_2\left(\frac{1}{n}, f\right).
$$

Using a similar approach as in [2] one can prove

$$
(2.5) \t\t\t\t\t\|\, t_n^{(1)}\| \leq B_2 n^2 w_2 \left(\frac{1}{n},\, f\right).
$$

In fact one can prove more than (2.5) but, for our purposes, this is sufficient. Now we prove Theorem 2.

PROOF OF THEOREM 2. From [3] it follows that for $n = 1, 3, 5, \dots$ we have

$$
f(x) - R_n(x) = f(x) - t_n(x) + \sum_{k=0}^{n-1} (t_n(x_{kn}) - f(x_{kn}))A(x - x_{kn})
$$

$$
+ \sum_{k=0}^{n-1} t'_n(x_{kn})B(x - x_{kn}) + \sum_{k=0}^{n-1} t''_n(x_{kn})C(x - x_{kn})
$$

$$
+ \sum_{k=0}^{n-1} t'_n(v_{kn})D(x - x_{kn}).
$$

Here $A(x - x_{kn})$, $B(x - x_{kn})$, $C(x - x_{kn})$ and $D(x - x_{kn})$ are fundamental functions of (0,1,2,4) interpolation. Their explicit forms and estimates are given in our earlier work [3]. Here we need only use the lower and upper estimates.

340 **A. K. VARMA** Israel J. Math.,

$$
\sum_{k=0}^{n-1} |A(x - x_{kn}| \le 11n, \sum_{k=0}^{n-1} |A(\pi - x_{kn})| > c_3n,
$$

$$
\sum_{k=0}^{n-1} |B(x - x_{kn})| \le \frac{3}{n}, \sum_{k=0}^{n-1} B(\frac{\pi}{2} - x_{kn}) > \frac{c_4}{n},
$$

(2.7)

$$
\sum_{k=0}^{n-1} |C(x - x_{kn})| \le \frac{13}{n}, \sum_{k=0}^{n-1} |C(\pi - x_{kn}) > \frac{c_3}{n},
$$

$$
\sum_{k=0}^{n-1} |D(x - x_{kn})| \le \frac{2\pi}{3n^3}, \sum_{k=0}^{n-1} |D(\pi - x_{kn})| > \frac{1}{n^3}.
$$

On using (2.1) – (2.5) and (2.7) we have

$$
|f(x) - R_n(x)| \leq c_2 w_2 \left(\frac{1}{n}, f\right) + c_2 w_2 \left(\frac{1}{n}, f\right) 11n
$$

+ $B_2 n^2 w_2 \left(\frac{1}{n}, f\right) \frac{3}{n} + B_2 n^2 w_2 \left(\frac{1}{n}, f\right) \frac{13}{n}$
+ $B_2 n^4 w_2 \left(\frac{1}{n}, f\right) \frac{2\pi}{3n^3}$
 $\leq c n w_2 \left(\frac{1}{n}, f\right),$

where $c = \max\{c_2, 13, B_2\}$. This proves Theorem 2.

Proof of Theorem 3 is a direct application of a recent result of O. Kis and P. Vertesi [1].

Let x_{kn} , $n = 1, 2, \dots$ be an infinite point system such that $0 \le x_{kn} < 2\pi$. We define

$$
L_n(f, x) = \sum_{k=0}^{n-1} f(x_{kn}) P_{kn}(x),
$$

$$
\lambda_n(x) = \sum_{k=0}^{n-1} |P_{kn}(x)|
$$

where $P_{kn}(x)$ are 2π periodic continuous functions.

THEOREM 5 (O. *Kis and P. Vertesi*). If $-\infty < x_0 < \infty$ and $\lim_{n\to\infty} \lambda_n(x_0)$ $\neq 1$, then there exist $f(x), f \in \tilde{c}(\phi)$ and integers $0 < n_1 < n_2 < \cdots$ such that $|f(x_0) - L_{nk}(f, x_0)| > \lambda_{nk}(x_0)\phi(d_{nk})$ for $k = 1, 2, \cdots$. *Here* $d_n = \min(x_{k+1,n} - x_{kn})$ *.*

NOTE. The Theorem is valid even in the case where $\lim_{n\to\infty} \lambda_n(x_0)$ does not **exist.**

PROOF OF THEOREM 3. We choose here $p_{nk}(x) = A(x - x_{kn})$, $x_0 = \pi$, d_n $= 2\pi/n$, $n = 1,3,5,7$ and observe that $\lambda_n(\pi) = \sum_{k=0}^{n-1} |A(\pi - x_{kn})| > c_3n$ from **(2.7). The conclusion of our theorem follows immediately.**

REFERENCES

1. O. KIs and P. O. H. VERTESI, *On certain linear operators I*, Acta. Math. Acad. Sci. Hungar. 22 (1971), 65-71.

2. S. B. STECKIN, On best approximation of continuous functions, Izv. Akad. Nauk. 15 (1951), 219-242.

3. A. K. VARMA, *Some remarks on trigonometric interpolation,* Israel J. Math. 7 (1969), 177-185.

UNIVERSITY OF FLORIDA 32601 GAINESVILLE, FLORIDA