CONCERNING THE ORDER OF APPROXIMATION
OF PERIODIC CONTINUOUS FUNCTIONS BY
TRIGONOMETRIC INTERPOLATION POLYNOMIALS

BY
A. K. VARMA

ABSTRACT

Let x;, = 27kin, k = 0,1 ...n—1 (n odd positive integer). Let Rn(x) be
the unique trigonometric polynomial of order 2x satisfying the interpolatory
conditions: Rna(x;,) = f(x), R (x,) =0, j=1,2,4, k=0,1...,n—1,
We set wy(t,f) as the second modulus of continuity of f(x). Then we prove
that | Ra(x) — f (x)] = o(nwz(lln f)). We also examine the question of lower
estimate of || R, — f ||. This generalizes an earlier work of the author.

Let
2k . e
(1.1 Xiw = (k=0,1,---,n — 1; nis an odd positive integer).

Let R,(x) be the unique trigonometric polynomial of order 2n determined by the

interpolatory conditions

(1'2) Rn(xkn) =f(xkn)’ Rtfj)(xkn) = 0,] = 132’ 49 k= 0’ 1’ R — 1.
We assume that R,(x) has the following form

2n—1
1.3) do + X (d;cosjx + e sin jx) + dy, cos 2nx.

ji=1

In our earlier work [3], we considered the problem of existence, uniqueness,

explicit representation and problem of uniform convergence of R,(x) to f(x) on
the real line. The main theorem of [3] is as follows.

THEOREM 1. a) If f(x) is a 2r periodic continuous function satisfying the
Zygmund condition
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1.4 | FOx + h) = 2f(x) + f(x — b)| = o(h),

then the sequence {R,(x)} defined by (1.2) and (1.3) converges uniformly to f(x)
over the real line. b) Further, Zygmund class cannot be replaced by Lip «,
O<axl.

The objects of this paper is to examine the question of lower and upper estimates

of ” =R, () “ in uniform norm for a certain class of continuous periodic
functions.

THEOREM 2. Let w, (t,f) be the second modulus of continuity of f(x). Then
we have

1.5) [ Ry() = /()] =0 (n W, (% f) .

COROLLARY. Let f(x) satisfy (1.4). From (1.5) we have | R,(x)—f(x)| = o(L).
Thus Theorem 1-a) is a special case of Theorem 2.

Let us denote by &(¢) the class of all 2x periodic continuous functions for which

(1.6) wa(t,/) = 0(¢(1))-
Let ¢(t) have the following properties

) ¢()>0fort>0,$0) =0, H(T)2 ¢, T 21,

ii) ¢(?) is continuous for ¢ > 0,

a.mn

iii) #*/¢(¥) is monotonic increasing for ¢ = 0
iv) Lim,.q, /() =O.

THEOREM 3. There exists a 2n periodic continuous function f belonging to
&(¢p) for which

1.8) [ R,(m) —f(n)] >cne (%) for n =ny, ny, -+
where 0 <n, <n, <--- and n is always an odd positive integer.

COROLLARY. There exists a continuous 2n periodic function from the class of
Junctions which satisfy the Zygmund condition w,(f, h)=0(h) such that , R,(m)
—f(n)] > ¢, i.e., for such a function, R,(x) cannot converge uniformly to f(x) on
the real line.

Thus Theorem 3 is much stronger than Theorem 1(b).

Proof of Theorem 2 depends on the following



Vol. 12,1972 APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS 339

THEOREM 4  (S. B. Steckin). Let k be a positive integer. Then there exists a
positive constant ¢, such that for every fec,, we can find a trigonometric poly-
nomial of order n at most such that

e8) 7= tl < eom(5 /)
and
22) 0] = B 11 ).

Here w, (3,f) is the modulus of smoothness of order k of f(x).
From (2.2) we have for k=2

1
@3 4] < Bt f ).
On using the Bernstein inequality twice, we have

(2.4) | 26

<B, n4w2(i, f )
n
Using a similar approach as in [2] one can prove
@5) 1)< Bantws (5. 1 ).

In fact one can prove more than (2.5) but, for our purposes, this is sufficient.
Now we prove Theorem 2.

ProoF oF THEOREM 2. From [3] it follows that for n =1,3,5, --- we have

n—1
J(x) = Ry(0) =f(x) — t,(x) + k2=o (ta(kn) = f i) A(X = X0)

n—1

1
(2'6) + 2 t,:(xkn)B(x - xlm) + Z t:(xka)c(x - xkn)
k=0

n—
k=

= o

n
+ 2 tftw)(xkn)D(x - xkn)'
k=0

Here A(x — x;,), B(x — x,), C(x — x,,) and D(x — x,,) are fundamental functions
of (0,1,2,4) interpolation. Their explicit forms and estimates are given in our
earlier work [3]. Here we need only use the lower and upper estimates.



340 A. K. VARMA Israel J. Math.,

n—1

n—1
| AGx = x| S11n, Z | A@m = x,)| > ¢,
=0 k=0

k=

n—1 n—-1
[ B(x — xk,,)l =< —3—, B (E— - xk,,) > 0—4,
(2'7) k=0 k=0 2
n—1 13 n-1 cy
z ! C(x - xkn), < e 2 ’ C(TC - xkn) > —
k=0 B k=0 n

2%
3n¥

On using (2.1)-(2.5) and {2.7) we have

n—1 n—
T [ Dx-x)l = Y | D(r - x0)| > ~1§-
k=0 k=0 n

1769 = R0 S e f)eawa . £) 11m
+ Byn*w, (—’11-, f) % + B,n’w, (%—, f) 1n3—

1 2n
+ anéwz(—nﬂ f) 33

cnw, (%, f) ,

where ¢ = max {c,, 13, B,}. This proves Theorem 2.

Proof of Theorem 3 is a direct application of a recent result of O. Kis and
P. Vertesi [1].

Let x;,, n=1,2,-« be an infinite point system such that 0 < x;, <27. We
define

IA

n-1
Ln(.f’ x) = k=20 f(xkn)Pkn(x),

n-1
M) = T | Pry(0)]
k=0

where P,,(x) are 2r periodic continuous functions.

THEOREM 5 (0. Kis and P. Vertesi). If — 0 <x,< o and lim,_, 4,(xq)
# 1, then there exist f(x),feé(¢) and integers O <n, <n, <-.- such that
[ £(x0) = Ly (s X0)| > Any(X0)$(dy,) for k=1, 2,-+. Here d, = min Xy 1,5~ Xyn)-
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Note. The Theorem is valid even in the case where lim,,, 4,(x;) does not
exist.

ProOF OF THEOREM 3. We choose here p,(x)=A(x —x,), xo=m=, d,

=2n/n, n=1,3,5,7..... and observe that A,(t) = Xi=¢ l Al — xk,,)] > ¢3n from
(2.7). The conclusion of our theorem follows immediately.
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