CONCERNING THE ORDER OF APPROXIMATION OF PERIODIC CONTINUOUS FUNCTIONS BY TRIGONOMETRIC INTERPOLATION POLYNOMIALS

BY

A. K. VARMA

ABSTRACT

Let $x_{kn} = 2\pi k/n$, $k = 0, 1 \dots n-1$ (*n* odd positive integer). Let $R_n(x)$ be the unique trigonometric polynomial of order 2*n* satisfying the interpolatory conditions: $R_n(x_{kn}) = f(x_{kn})$, $R_n^{(j)}(x_{kn}) = 0$, j = 1, 2, 4, $k = 0, 1 \dots, n-1$. We set $w_2(t, f)$ as the second modulus of continuity of f(x). Then we prove that $|R_n(x) - f(x)| = o(nw_2(1/nf))$. We also examine the question of lower estimate of $||R_n - f||$. This generalizes an earlier work of the author.

Let

(1.1)
$$x_{kn'} = \frac{2\pi k}{n}, (k = 0, 1, \dots, n-1; n \text{ is an odd positive integer}).$$

Let $R_n(x)$ be the unique trigonometric polynomial of order 2*n* determined by the interpolatory conditions

(1.2)
$$R_n(x_{kn}) = f(x_{kn}), \ R_n^{(j)}(x_{kn}) = 0, j = 1, 2, 4, k = 0, 1, \dots, n-1.$$

We assume that $R_n(x)$ has the following form

(1.3)
$$d_0 + \sum_{j=1}^{2n-1} (d_j \cos jx + e_j \sin jx) + d_{2n} \cos 2nx.$$

In our earlier work [3], we considered the problem of existence, uniqueness, explicit representation and problem of uniform convergence of $R_n(x)$ to f(x) on the real line. The main theorem of [3] is as follows.

THEOREM 1. a) If f(x) is a 2π periodic continuous function satisfying the Zygmund condition λ

Received April 20, 1972

A. K. VARMA

(1.4)
$$|f(x+h) - 2f(x) + f(x-h)| = o(h),$$

then the sequence $\{R_n(x)\}$ defined by (1.2) and (1.3) converges uniformly to f(x) over the real line. b) Further, Zygmund class cannot be replaced by Lip α , $0 < \alpha < 1$.

The objects of this paper is to examine the question of lower and upper estimates of $||f - R_n(f)||$ in uniform norm for a certain class of continuous periodic functions.

THEOREM 2. Let $w_2(t, f)$ be the second modulus of continuity of f(x). Then we have

(1.5)
$$|R_n(x) - f(x)| = o\left(n w_2\left(\frac{1}{n}, f\right)\right)$$

COROLLARY. Let f(x) satisfy (1.4). From (1.5) we have $|R_n(x) - f(x)| = o(1)$. Thus Theorem 1-a) is a special case of Theorem 2.

Let us denote by $\tilde{c}(\phi)$ the class of all 2π periodic continuous functions for which

(1.6)
$$w_2(t,f) = 0(\phi(t)).$$

Let $\phi(t)$ have the following properties

(1.7)
$$\begin{cases} i) \quad \phi(t) > 0 \text{ for } t > 0, \ \phi(0) = 0, \ \phi(T) \ge \phi(t), \ T \ge t \\ ii) \quad \phi(t) \text{ is continuous for } t > 0, \\ iii) \quad t^2/\phi(t) \text{ is monotonic increasing for } t \ge 0 \\ iv) \quad \lim_{t \to 0^+} t^2/\phi(t) = 0. \end{cases}$$

THEOREM 3. There exists a 2π periodic continuous function f belonging to $\tilde{c}(\phi)$ for which

(1.8)
$$|R_n(\pi) - f(\pi)| > c n \phi\left(\frac{1}{n}\right) \text{ for } n = n_1, n_2, \cdots$$

where $0 < n_1 < n_2 < \cdots$ and n is always an odd positive integer.

COROLLARY. There exists a continuous 2π periodic function from the class of functions which satisfy the Zygmund condition $w_2(f,h)=O(h)$ such that $|R_n(\pi) - f(\pi)| > c$, i.e., for such a function, $R_n(x)$ cannot converge uniformly to f(x) on the real line.

Thus Theorem 3 is much stronger than Theorem 1(b). Proof of Theorem 2 depends on the following THEOREM 4 (S. B. Steckin). Let k be a positive integer. Then there exists a positive constant c_k such that for every $f \in c_{2\pi}$ we can find a trigonometric polynomial of order n at most such that

(2.1)
$$\left\|f-t_{n}\right\| \leq c_{k} w_{k}\left(\frac{1}{n}, f\right)$$

and

(2.2)
$$\left\| t_n^{(k)} \right\| \leq B_k n^k w_k \left(\frac{1}{n}, f \right)$$

Here $w_k(\delta, f)$ is the modulus of smoothness of order k of f(x).

From (2.2) we have for k = 2

(2.3)
$$||t_n^{(2)}|| \leq B_2 n^2 w_2 \left(\frac{1}{n}, f\right).$$

On using the Bernstein inequality twice, we have

(2.4)
$$||t_n^{(iv)}|| \leq B_2 n^4 w_2 \left(\frac{1}{n}, f\right)$$

Using a similar approach as in [2] one can prove

(2.5)
$$||t_n^{(1)}|| \leq B_2 n^2 w_2 \left(\frac{1}{n}, f\right)$$

In fact one can prove more than (2.5) but, for our purposes, this is sufficient. Now we prove Theorem 2.

PROOF OF THEOREM 2. From [3] it follows that for $n = 1, 3, 5, \cdots$ we have

$$f(x) - R_n(x) = f(x) - t_n(x) + \sum_{k=0}^{n-1} (t_n(x_{kn}) - f(x_{kn}))A(x - x_{kn})$$

$$(2.6) + \sum_{k=0}^{n-1} t'_n(x_{kn})B(x - x_{kn}) + \sum_{k=0}^{n-1} t''_n(x_{kn})C(x - x_{kn})$$

$$+ \sum_{k=0}^{n-1} t^{(iv)}_n(x_{kn})D(x - x_{kn}).$$

Here $A(x - x_{kn})$, $B(x - x_{kn})$, $C(x - x_{kn})$ and $D(x - x_{kn})$ are fundamental functions of (0, 1, 2, 4) interpolation. Their explicit forms and estimates are given in our earlier work [3]. Here we need only use the lower and upper estimates.

A. K. VARMA

(2.7)

$$\sum_{k=0}^{n-1} |A(x - x_{kn}| \leq 11n, \quad \sum_{k=0}^{n-1} |A(\pi - x_{kn})| > c_3n, \\
\sum_{k=0}^{n-1} |B(x - x_{kn})| \leq \frac{3}{n}, \quad \sum_{k=0}^{n-1} B\left(\frac{\pi}{2} - x_{kn}\right) > \frac{c_4}{n}, \\
\sum_{k=0}^{n-1} |C(x - x_{kn})| \leq \frac{13}{n}, \quad \sum_{k=0}^{n-1} |C(\pi - x_{kn})| > \frac{c_3}{n}, \\
\sum_{k=0}^{n-1} |D(x - x_{kn})| \leq \frac{2\pi}{3n^3}, \quad \sum_{k=0}^{n-1} |D(\pi - x_{kn})| > \frac{1}{n^3}.$$

On using (2.1)-(2.5) and (2.7) we have

$$|f(x) - R_n(x)| \leq c_2 w_2 \left(\frac{1}{n}, f\right) + c_2 w_2 \left(\frac{1}{n}, f\right) 11n + B_2 n^2 w_2 \left(\frac{1}{n}, f\right) \frac{3}{n} + B_2 n^2 w_2 \left(\frac{1}{n}, f\right) \frac{13}{n} + B_2 n^4 w_2 \left(\frac{1}{n}, f\right) \frac{2\pi}{3n^3} \leq cn w_2 \left(\frac{1}{n}, f\right),$$

where $c = \max \{c_2, 13, B_2\}$. This proves Theorem 2.

Proof of Theorem 3 is a direct application of a recent result of O. Kis and P. Vertesi [1].

Let x_{kn} , $n = 1, 2, \cdots$ be an infinite point system such that $0 \le x_{kn} < 2\pi$. We define

$$L_{n}(f,x) = \sum_{k=0}^{n-1} f(x_{kn}) P_{kn}(x),$$
$$\lambda_{n}(x) = \sum_{k=0}^{n-1} |P_{kn}(x)|$$

where $P_{kn}(x)$ are 2π periodic continuous functions.

THEOREM 5 (O. Kis and P. Vertesi). If $-\infty < x_0 < \infty$ and $\lim_{n\to\infty} \lambda_n(x_0) \neq 1$, then there exist $f(x), f \in \tilde{c}(\phi)$ and integers $0 < n_1 < n_2 < \cdots$ such that $|f(x_0) - L_{nk}(f, x_0)| > \lambda_{nk}(x_0)\phi(d_{nk})$ for $k = 1, 2, \cdots$. Here $d_n = \min(x_{k+1,n} - x_{kn})$.

NOTE. The Theorem is valid even in the case where $\lim_{n\to\infty} \lambda_n(x_0)$ does not exist.

PROOF OF THEOREM 3. We choose here $p_{nk}(x) = A(x - x_{kn}), x_0 = \pi, d_n = 2\pi/n, n = 1, 3, 5, 7$ and observe that $\lambda_n(\pi) = \sum_{k=0}^{n-1} |A(\pi - x_{kn})| > c_3 n$ from (2.7). The conclusion of our theorem follows immediately.

References

1. O. KIS and P. O. H. VERTESI, On certain linear operators I, Acta. Math. Acad. Sci. Hungar. 22 (1971), 65-71.

2. S. B. STEČKIN, On best approximation of continuous functions, Izv. Akad. Nauk. 15 (1951), 219–242.

3. A. K. VARMA, Some remarks on trigonometric interpolation, Israel J. Math. 7 (1969), 177-185.

UNIVERSITY OF FLORIDA 32601 GAINESVILLE, FLORIDA